
Debian packages of ROOT.

BV

[2014-10-20 Mon 09:20]

1 ROOT Debian packages compared to others

Christian Christensen has done a lot of great work in developing Debian
packages of ROOT. They are distributed as part of both Debian proper
and Ubuntu. Since they are proper Debian packages they present a ROOT
environment which di�ers a bit from what one has when installing from
source. In particular Debian policy requires that no special environment
variables must be set to use a package where "standard" ROOT installs
typically require ROOTSYS to be set to the base installation location and
various *PATH variables to be added to.

Life goes on and support for these packages has waned somewhat in
the community so things are not always so smooth. This has even led to
Debian dropping the ROOT packages from time to time. Below collects
some information on how to get over the bumps in using these packages

2 Building Debian packages from source

t.b.d.

3 Using Debian ROOT packages

3.1 PyROOT, ROOT Python Bindings

In principle, one need not do anything special to use PyROOT:

$ python

>>> import ROOT

>>> ROOT.TBrowser()

1



3.1.1 No module named ROOT

At least in Ubuntu 14.04 naive importing of the ROOT module fails because
the ROOT.py �le is not found.

$ python -c 'import ROOT'

Traceback (most recent call last):

File "<string>", line 1, in <module>

ImportError: No module named ROOT

Here is it's location:

$ dpkg -L libroot-bindings-python5.34 | grep ROOT.py

/usr/lib/x86_64-linux-gnu/root5.34/ROOT.py

/usr/share/python-support/root/ROOT.py

The two copies are identical.
According to Debian policy python-support is deprecated. It references

the doc area of the package of the same name which also says this location
is deprecated but supported. Neither reverence what is now in favor.

After a few random searches and poking around, it seems like the place
these sort of things are supposed to live is now under dist-packages. Sym-
linking the ROOT module there seems to let things work

$ sudo ln -s /usr/share/python-support/root/ROOT.py /usr/lib/python2.7/dist-packages/

$ python -c 'import ROOT'

$ echo $?

0

3.2 PyROOT and ipython

The ipython program gives you a fantastic Python command line (and other
goodies). Use it.

$ sudo apt-get install ipython

$ ipython

...

In [1]: import ROOT

In [2]: ROOT.TBro<TAB>

2

https://www.debian.org/doc/packaging-manuals/python-policy/ap-packaging_tools.html


In [2]: ROOT.TBrowser()

Out[2]: <ROOT.TBrowser object ("Browser") at 0x35b8a70>

In [3]: ROOT.TBro<TAB>

In [3]: ROOT.TBrowser

Tab completion works but take note that many of the top-level objects
in the ROOT module are autoloaded and so will not be around until the are
�rst explicitly referenced. Online documentation is exposed with ipython's
usual "?". As the example below shows there is not always docstrings but a
lot can be learned from the (C++) calling prototypes.

In [3]: ROOT.TBrowser?

Type: TBrowser_meta

String Form:<class 'ROOT.TBrowser'>

File: /usr/lib/python2.7/dist-packages/ROOT.py

Docstring: <no docstring>

Constructor information:

Definition:ROOT.TBrowser(self, const char* name, void* obj, TClass* cl, const char* objname, const char* title, Int_t x, Int_t y, UInt_t width, UInt_t height, Option_t* opt='')

Docstring:

TBrowser::TBrowser(const char* name = "Browser", const char* title = "ROOT Object Browser", TBrowserImp* extimp = 0, Option_t* opt = "")

TBrowser::TBrowser(const char* name, const char* title, UInt_t width, UInt_t height, TBrowserImp* extimp = 0, Option_t* opt = "")

TBrowser::TBrowser(const char* name, const char* title, Int_t x, Int_t y, UInt_t width, UInt_t height, TBrowserImp* extimp = 0, Option_t* opt = "")

TBrowser::TBrowser(const char* name, TObject* obj, const char* title = "ROOT Object Browser", Option_t* opt = "")

TBrowser::TBrowser(const char* name, TObject* obj, const char* title, UInt_t width, UInt_t height, Option_t* opt = "")

TBrowser::TBrowser(const char* name, TObject* obj, const char* title, Int_t x, Int_t y, UInt_t width, UInt_t height, Option_t* opt = "")

TBrowser::TBrowser(const char* name, void* obj, TClass* cl, const char* objname = "", const char* title = "ROOT Foreign Browser", Option_t* opt = "")

TBrowser::TBrowser(const char* name, void* obj, TClass* cl, const char* objname, const char* title, UInt_t width, UInt_t height, Option_t* opt = "")

TBrowser::TBrowser(const char* name, void* obj, TClass* cl, const char* objname, const char* title, Int_t x, Int_t y, UInt_t width, UInt_t height, Option_t* opt = "")

3.3 PyROOT and virtualenv

The command virtualenv produces a directory that is con�gured to be a
mini-environment for Python programs. It is a great way to try out Python
packages w/out disturbing the system or to allow multiple, independent in-
stallations to coexist in your user account. By default virtualenv does not
expose any system packages to the environment it makes. This is really
good for developing a Python package as it allows the developer to under-
stand what dependencies their package may need. But, it does block the
user from accessing PyROOT from ROOT installed as a system package.

3



To create a virtual environment with access to system Python packages
one needs to pass a �ag:

$ virtualenv --system-site-packages venvdir

If you have already created a venvdir and did not instruct the use of
system site packages you can re-run the command with this �ag added. Then
setup and use/test it in the normal manner:

$ source venvdir/bin/activate

$ python -c 'import ROOT'

4


	ROOT Debian packages compared to others
	Building Debian packages from source
	Using Debian ROOT packages
	PyROOT, ROOT Python Bindings
	No module named ROOT

	PyROOT and ipython
	PyROOT and virtualenv


